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Abstract

This paper considers the behaviour of beams hanging from cables. If heavy, these beams can topple sideways in a
mode which can be idealised as a rigid body rotation, combined with a minor axis de¯ection. This simpli®cation
allows an analytical treatment of the toppling mode, which in turn allows a stability analysis of heavy beams, such

as prestressed precast concrete bridge beams. A detailed analysis is presented for beams with inclined or vertical
cables, with inclined or vertical lifting yokes, with lateral loads (as from wind or inertia e�ects), and with initial
imperfections. Examples are given of the various e�ects that can be analysed in this way, and the validity of the
initial assumption, about rotation without variation in twist, is checked. It is shown that this type of analysis is

particularly suited to concrete beams. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The lateral stability of precast concrete bridge beams is a potential problem if current production
techniques are extended to longer spans. The need to keep weight down for transportation, while
increasing spans to deal with wider roads, has meant that the beams tend to have only residual ¯anges.
They thus become susceptible to lateral buckling. However, unlike steel beams, for which lateral±
torsional buckling is a well-known problem, with modern concrete beams the torsional sti�ness is of the
same order of magnitude as the minor axis sti�ness (rather than being an order of magnitude lower),
and the primary loading case to be considered is the beam's own self-weight.

In a separate study, using ®nite element techniques (Stratford and Burgoyne, 1999), it was found that
the case of the beam hanging from cables was the most critical condition, due to the absence of any
rotational restraint, and also that the relatively high torsional sti�ness means that the beam tends to
rotate as a rigid body, with very little variation of twist along the length. Thus, the buckling mode of a
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Nomenclature

a Distance of yoke attachment point from end of beam
b Distance of yoke attachment point from centre of beam
C, D Used in hanging beam analysis to simplify equations.
CD Drag Coe�cient
d Overall beam depth
e Position of action of p on beam below the yoke to cable attachment points
E Young's modulus of concrete
F Tension in cables
G Shear Modulus of concrete
H Axial load in beam due to horizontal component of cable tension
h Height of yoke to cable attachment points above the centroid of the beam
Ix Second moment of area about the beam section's major-axis
Iy Second moment of area about the beam section's minor-axis
J St. Venant's torsion constant for beam section
L Length of beam
M Bending moment about minor-axis of beam
MZ Moment of cable forces about the minor-axis at the yoke attachment point
M0 All minor-axis moments acting about the yoke attachment point
p Lateral load on beam per unit length
Pcr Euler buckling load of beam
T Torque in beam
v(x ) Lateral de¯ection measured in the minor-axis direction (which rotates with y )
v ', v0 First and second di�erentials of v(x ) with respect to position (dv/dx, d2v/dx 2)
V Component of the cable tension acting parallel to the major-axis of the beam
v0(x ) Shape of initial imperfection
VS Wind speed
V0 Minor-axis shear force in beam just inside yoke attachment points
vms Mid-span lateral de¯ection along minor axis of beam
w Self weight of beam per unit length
wcr Critical self weight of beam to cause buckling per unit length
x Distance along beam, measured from the yoke attachment point
yb Distance of bottom ®bre of beam below centroid of beam
a Cable inclination angle above the horizontal
b Yoke inclination angle above the horizontal
w Used in hanging beam analysis to simplify equations.
d0 Magnitude of initial lateral imperfection
l Slope of beam at x=0
kms Mid-span curvature about minor-axis
k0 Initial mid-span curvature
m Axial load parameter in hanging beam buckling analysis.
dy Twist in beam about axis
y Roll angle: rigid body rotation about the beam's axis
r Density of air
c Lateral load parameter
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hanging concrete beam can be regarded, to a large degree, as a lateral bending of the beam about its
minor axis, combined with a rigid body rotation about the points of attachment to the supporting
cables.

The phrase `toppling' will be used in this paper to refer to such a rigid body rotation, to distinguish it
from `twisting', which is taken to imply a variation of rotation along the length of the beam.

The complete lateral±torsional buckling problem of a beam supported by cables is not amenable to
analytical solution. The cables may be inclined to the vertical, thus inducing axial forces in the beam;
they may not be attached at the ends of the beam, and they will certainly not be attached on the
centroidal axis. However, by assuming that the beam does not twist (by e�ectively assuming in®nite
torsional rigidity), the problem is simpli®ed, and an analytical solution becomes possible, albeit one
which requires the numerical solution of a ®nal set of equations. That analysis is the subject of this
paper.

Swann and Godden (1966) investigated the lateral buckling of concrete beams lifted by cables and
presented a numerical method for determining how they behave. Baker and Edwards (1985) gave a
method for analysing the non-linear elastic behaviour of thin-walled reinforced and prestressed beams
which might be used to analyse the stability of various support conditions. However in both cases the
analysis is complicated and neither paper leads to a simple design formula. Mast (1989, 1993) (also
reported by Anderson, 1971) gave a simple analysis, but this does not treat inclined cables or initial
imperfection e�ects in detail.

2. De®nition of problem

Fig. 1 shows the generic problem. A beam of length L is supported at a distance a from each end by
two yokes ZY and Z 'Y ', which are rigidly attached to the beam and are inclined at an angle b to the
centroidal axis. The half-distance between the supports is b. The tops of the yokes are attached to cables
which are inclined at an angle a and meet at X. In practice, b will either be 908 if the yokes are
prevented from rotating about a horizontal axis, or be equal to a if the yokes can align with the cables.
The derivation will be carried out for a general value of b, which can then simpli®ed for the two special
cases. The cables are attached to the yokes at a height of h above the centroidal axis.

The only loads acting on the beam are the self-weight w per unit length, which acts at the centroid,
and a load p per unit length which acts normal to the beam. This force is assumed to be made up of

Fig. 1. The undeformed geometry of a beam hanging from inclined yokes and cables.
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two components; wind loads which act at the mid-height of the beam and dynamic factors which act at
the centroid. These are combined: the analysis assumes that both act through a single point at a distance
e below the top of the yokes, Y and Y '.

3. Outline of theory

Fig. 2 shows the buckled shape of a hanging beam. The shape is de®ned by a rigid-body rotation
through an angle y, together with a de¯ection, v(x ) measured along the minor-axis direction (which
itself rotates with y ) as shown in Fig. 3. v(x ) is measured relative to the centroid of the beam at the
point where the cables are attached. The variable x is measured (without loss of generality) from the
left-hand yoke attachment point.

4. Assumptions

The following assumptions are made:

1. The beam does not de¯ect by bending about its major-axis or by torsion. However, it is free to bend
about its minor-axis and to topple as a rigid-body.

2. The yokes are assumed to be rigid and to be rigidly connected to the beam.
3. The tops of the yokes are attached (at Y and Y ') to cables which are inclined at an angle a to the

horizontal and which meet at a point X. The cables can only carry axial tensile force.
4. The beam has a small initial imperfection v0(x ) which varies as a single sinusoidal half wave along

the beam's length, but o�set so that v0=0 at the yoke attachment points.
5. The beam is acted on by a lateral load p per unit length, which is applied at a distance e below the

yoke-cable attachment points. p is assumed to act parallel to the direction of the beam's major
principal axis as the beam rotates.

6. The beam's own self-weight acts through the centroid.
7. The minor-axis de¯ection v is assumed to be small by comparison with the length of the beam.
8. The beam remains linear elastic at all times with ®xed section properties.

The assumption about ®xed sti�nesses means that the analysis does not attempt to look at the
behaviour of the beam after cracking takes place. Cracking would signi®cantly reduce the sti�ness of the

Fig. 2. The buckling mode of a typical beam hanging from inclined cables showing the parameters used to de®ne its shape.
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beam; if buckling was imminent before cracking it would certainly occur after cracking, which would
thus be catastrophic. The results of this analysis are used elsewhere (Stratford and Burgoyne, 1999) to
give design guidance, with particular attention paid to the stresses induced by the pre-buckling
deformations. These can then be compared with the prestress to ensure that cracking does not occur.
Thus, in the present analysis, not only must the critical load be determined, but also the response to
initial imperfections. The maximum lateral displacement will be used in a Southwell plot analysis and
the maximum minor-axis curvature will be used to impose limits on the minor axis bending stresses that
are induced.

5. General analysis

Fig. 4 shows a vertical section through the beam at one of the yoke attachment points.
The cables are inclined at an angle to the vertical due to the action of the lateral load p. The cable

tension F can be found by applying the cosine rule to the force polygon shown in the inset in Fig. 4:

F � L
����������������������������������������
w2 � p2 � 2wp sin y

p
2 sin a

: �1�

Consideration of moment equilibrium for the whole beam about an axis through YY ' leads to:

wh sin y� pe� whl cos y
tan b

� w cos y
L

�
length

v dx, �2�

Fig. 3. A vertical section through the beam at a yoke attachment point, showing the displacements.
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in which the third term represents a correction factor, which cannot easily be visualised in Fig. 4, that
accounts for the lateral change in position of YY ' when the yokes are not vertical and when the beam is
bending about the minor axis. l is de®ned as the minor-axis slope of the beam at the yoke attachment
point Z,

l � �v 0 �x�0 �3�
(Primes denote di�erentiation with respect to x ).

Eq. (2) will later be used to establish the roll angle y as a function of the displaced shape v.
Fig. 5 shows the de¯ected shape of the beam in the minor-axis direction, including the initial

sinusoidal imperfection v0 of magnitude d0:

v0 � d0 sin
p�x� a�

L
ÿ d0 sin

pa
L
: �4�

Note that for convenience, x is measured relative to the left hand yoke attachment point Z.

Fig. 4. The forces acting on a de¯ected hanging beam.

Fig. 5. The minor-axis de¯ected shape of the beam, and the initial imperfection.
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Fig. 6 shows all the forces acting on the beam: the cable tension F, the beam's self-weight w, and the
lateral loading p, while Fig. 7 shows the components of these forces which act in the axial and minor-
axis directions, since the analysis is concerned only with the actions that cause bending about the beam's
minor-axis, the section being deemed to be rigid for both major-axis bending and torsion. For clarity
the beam has been shown with the minor axis horizontal, and with no curvature. The component of the
self-weight which acts laterally is w sin y. V and H are the components of the cable tension which act in
the minor-axis and axial directions respectively. By resolving forces laterally:

V � �w sin y� p�L
2

: �5�

The axial component of the cable tension is H=F cos a, where F is given in Eq. (1):

H � L
����������������������������������������
w2 � p2 � 2wp sin y

p
2 tan a

�6�

In Fig. 8, these forces are transferred to the beam's centroid. It is convenient to express the total
lateral distributed load as c:

c � w sin y� p: �7�
The moment of the cable forces (V and H ) about the yoke attachment points (Z and Z ') is MZ. This

is obtained by considering Fig. 9, which shows the de¯ected shape of the beam and the cable forces
acting at the top of the yokes (Y and Y '). Taking moments about Z gives:

MZ � h

tan b
�V� lH �: �8�

It is convenient to derive the governing di�erential equation by considering the beam between the two
yoke attachment points (Z and Z ') by itself, as shown in Fig. 10. The e�ect of the lateral loading on the
overhangs (outside the section Z to Z ') must be included in the moment at the end of this section M0.
Using Eq. (8):

Fig. 6. The forces acting on a hanging beam, in three dimensions.
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M0 �
�
MZ � ca2

2

�
� h

tan b
�V� lH � � ca2

2
: �9�

The shear force at the end of the section Z±Z 0, V0 is simply:

V0 � cb: �10�
The remainder of the solution depends on whether the cables are inclined or vertical, since this a�ects

the form of the governing di�erential equation.

6. Beams with inclined cables

The governing equation for buckling in the central section of beam with inclined cables, as shown in
Fig. 10, is:

Fig. 7. Simpli®ed view showing only those loads which cause minor-axis bending of a hanging beam. The beam is shown with its

major axis horizontal and undeformed for clarity.

Fig. 8. The forces which give minor-axis bending transferred to the beam's centroid.
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M � ÿEIy
ÿ
v 00 ÿ v 000

� � V0xÿ cx2

2
�HvÿM0: �11�

This can be solved to give:

v � A cos mx� B sin mx� 1

m2EIy

"
c

 
x2

2
ÿ 1

m2

!
ÿ V0x�M0

#
� p2d0

p2 ÿ m2L2
sin

p�x� a�
L

, �12�

where

m �
��������
H

EIy

s
�13�

and A and B are constants.
The boundary conditions v = 0 at x = 0 and v '=0 at x=b (mid-span) allow A and B to be

calculated, whence:

Fig. 9. Determination of the moment about the yoke attachment points due to the cable forces acting at the ends of the yokes.

Fig. 10. The forces acting on the central section of the beam, used to derive the governing equation for buckling.
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v �

c
m4EIy

" 
1ÿ M0m2

c

!
�cos mx� tan mb sin mxÿ 1� � m2

�
x2

2
ÿ bx

�#

� p2d0
p2 ÿ m2L2

�
sin

p�x� a�
L

ÿ sin
pa
L
�cos mx� tan mb sin mx�

�
�14�

(for 0R xR 2b ).
Note that this is not a complete solution in its own right since it implicitly still involves the roll angle

y through the lateral load variable c (via Eq. (7)).
Eq. (14) describes the de¯ected shape of the beam between the yokes. It is also necessary to establish

the de¯ected shape in the overhangs; this is a simple bending problem (since no axial force is present)
with the governing equation:

M � ÿEIy
ÿ
v 00 ÿ v 000

� � ÿc�a� x�2
2

: �15�

This is solved subject to the boundary conditions v = 0 at x = 0 and v '=l at x = 0. This second
condition ensures continuity of slope between the overhangs and the central section. The shape of the
de¯ected overhangs is:

v � c
EIy

�
�a� x�4

24
ÿ a3x

6
ÿ a4

24

�
� d0

�
sin

p�x� a�
L

ÿ px
L

cos
pa
L
ÿ sin

pa
L

�
� lx �16�

(for ÿaR xR 0).
l is obtained by di�erentiating the equation for the shape of the central section Eq. (14) and

setting x=0:

l � c
m4EIy

" 
1ÿ M0m2

c

!
m tan mbÿ m2b

#
� p2d0

p2 ÿ m2L2

�
p
L

cos
pa
L
ÿ m sin

pa
L

tan mb
�
: �17�

Eqs. (14) and (16) between them give the de¯ected shape of the beam throughout its length in terms
of the roll angle y. Eq. (2) describes the overall equilibrium of the beam and can be used to obtain a
solution in terms of the roll angle y only. To apply Eq. (2), it is necessary to integrate the de¯ected
shape along the length of the beam. Since the mode shape is symmetrical, it is convenient to express this
integral as:�

v dx � 2

�0
ÿa

v dx�
�2b
0

v dx

length overhangs central section

: �18�

Eq. (18) can be evaluated by integrating Eqs. (14) and (16), and substituting for l from Eq. (17). The
resulting expression for

�
length

v dx is then used in Eq. (2) to give:�
h sin y� p

w
e

�
� C cos y�w sin y� p� �D cos y, �19�

where:
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C � 1

m4EIyL

"�
1

m
ÿ mM0

c

�
�wÿ 2mb� � m2a2bÿ 2

3
m2b3 � a5m4

10
ÿ m2hL

tan b

��
1

m
ÿ mM0

c

�
tan mbÿ b

�#
,

D � p2d0
�n2 ÿ m2L2�L

"
L

p

�
2ÿ a2p2

L2

�
cos

pa
L
ÿ w

m
sin

pa
L
ÿ hL

tan b

�
p
L

cos
pa
L
ÿ m sin

pa
L

tan mb
�#

�2d0
L

��
pa2

2L
ÿ L

p

�
cos

pa
L
ÿ a sin

pa
L
� L

p

�
�20�

and

w � sin 2mb� tan mb�1ÿ cos 2mbÿ a2m2�: �21�
Note that the above equations are dependent upon the end moment M0. Eq. (9) gives a relationship

for M0 in terms of l (itself a function of M0). By substituting for l from Eq. (17), in Eq. (9) and
rearranging:

M0 � 1

tan b� hm tan mb

"
c

 
h

�
L

2
� tan mb

m
ÿ b

�
� a2tan b

2

!

� d0p2m2hEIy
�p2 ÿ m2L2�

�
p
L

cos
pa
L
ÿ m sin

pa
L

tan mb
�#
:

�22�

Substitution of Eqs. (20)±(22) into Eq. (19) gives an equation in which the only unknown is the roll
angle y. In general, no analytical solution exists, but it can be solved by a suitable numerical technique,
such as Newton±Raphson. The aim is to ®nd the value of y which, when substituted into Eqs. (6), (13)
and (20)±(22) leads to Eq. (19) being satis®ed. The process is tedious, but essentially straightforward.
The de¯ected shape can then be found using Eqs. (14) and (16). Alternatively, y can be ®xed and w
varied until Eq. (19) is satis®ed. All of the results in this paper were produced in one or other of these
ways using the solver routine on a spreadsheet.

Of particular interest is the mid-span de¯ection, vms. From Eq. (14) with x=b:

vms � c
m4EIy

" 
1ÿ M0m2

c

!
�cos mb� tan mb sin mbÿ 1� ÿ m2b2

2

#

� p2d0
m2 ÿ m2L2

�
1ÿ sin

pa
L
�cos mb� tan mb sin mb�

�
:

�23�

It is also useful to calculate the mid-span curvature. By di�erentiation of Eq. (14), this can be
conveniently expressed in terms of vms:

k0 � kms � m2vms � 1

EIy

�
b2c
2
ÿM0

�
� d0p2

L2
: �24�

Note that Eq. (24) includes the initial curvature, k0=d0p
2/L 2. To calculate the additional stresses

caused by lifting (over and above those due to the imperfection), the additional curvature is given by:
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kms � m2vms � 1

EIy

�
b2c
2
ÿM0

�
: �25�

Eqs. (6) and (13) and Eqs. (19)±(25) are the complete general solution to the hanging beam problem.
For a given beam, the roll angle y is found from Eq. (19) and then the mid-span de¯ection and mid-
span curvature are found from Eqs. (23) and (25).

7. Simpli®cations

The general solution includes the e�ects of an initial imperfection, inclined yokes and lateral loading.
In practice, it is unlikely that all these e�ects will require consideration at once. Useful special cases
which yield considerably simpli®ed solutions are given below. The numerical examples relate to the
largest precast bridge beam available in the UK at present. This is from the Super-Y beam series
(Precast Concrete Association), and is designated SY-6. It is designed for spans up to 40 m and has the
section properties given in Table 1. All solutions have been obtained by assuming that the short-term
modulus of elasticity of concrete is 34 kN/mm2.

7.1. Perfect beam with vertical yokes and no lateral load

This is the simplest case with no initial imperfection (d0=0), vertical yokes (b=908) and no lateral
load ( p=0). It thus gives the buckling load and post-buckling response of a beam with inclined cables.
Fig. 11 compares the results of this analysis with the ®nite element eigenvalue solution described
elsewhere (Stratford and Burgoyne, 1999). For larger values of h and for 0.1 < a/L< 0.25, the present
analysis slightly over-estimates the buckling load. This is to be expected, since this analysis has assumed
the beam to be torsionally rigid; the actual torsional ¯exibility will allow buckling to occur at a slightly
lower load than that produced by this simpli®cation. However, since most beams are supported near
their ends, this discrepancy will not usually be signi®cant.

Above the critical load, the mid-span de¯ection can be found from Eq. (23). The short-dashed line on
Fig. 12 shows the variation in post-buckling mid-span de¯ection with beam self-weight for a typical
beam.

Table 1

Section properties of SY-6 beam

SY-6 beam

Overall beam depth d (m) 2a

Height of centroid above so�t yb (m) 0.855a

Cross sectional area A (m2) 0.709a

2nd moment of area about major-axis Ix (m4) 0.2837a

2nd moment of area about minor-axis Iy (m
4) 0.0140b

St. Venant's torsion constant J (m4) 0.0221c

Self weight w (kN/m) 16.74a

a From Precast Concrete Association Data Sheets.
b From simple hand analysis.
c From computer analysis.
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7.2. Initially imperfect beam with vertical yokes and no lateral load

In this case, an initial imperfection of magnitude d0 is introduced. The yokes remain vertical (b=908)
and there is no lateral load ( p = 0). This analysis allows the imperfection sensitivity of the previous
problem to be studied.

Results for a 40 m long SY-6 beam with a 30 mm initial imperfection are shown on Fig. 12. The
imperfect results are asymptotic to the post-buckling perfect behaviour, as would be expected. The
results are compared with a ®nite element initial imperfection analysis (Stratford and Burgoyne, 1999),
and show close agreement.

Fig. 11. Comparison of buckling load predictions obtained using the analytical solution with those of the eigenvalue ®nite element

analysis.

Fig. 12. Comparison of the load±de¯ection behaviour predicted using the analytical solution for a perfect beam with the results of

the ®nite element analysis, for an initially imperfect beam.
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7.3. Perfect beam with inclined yokes and no lateral load

In this case, the yokes are allowed to line up with the lifting cables (b=a ). The beam is perfect
(d0=0) and there is no lateral load ( p = 0). The problem thus represents the critical loading case for
beams where the yokes are free to rotate to match the inclination of the cables.

Fig. 13 shows the e�ect of allowing the yokes to rotate and of varying a, for a beam supported at its
ends. When b=a, so that the yokes align with the cables, the e�ect of increasing a is to slightly increase
the critical load, whereas when b is ®xed at 908, so that the yokes are vertical, the critical load
decreases. This result is slightly counter-intuitive, since at ®rst sight inclining the cables induces an axial
force, which can be expected to decrease the critical load, but there is a second factor, in that the
e�ective points of support (the positions of Y and Y ') move in from the ends and are displaced
laterally. This is a result which should be checked by model testing. It is important to note that this
result relies on the rigidity of the yoke connections, since a small amount of ¯exibility in the yoke causes
a signi®cant movement in the position of the cable connection, and hence of the axis of rotation.

The general equations can be used to investigate the behaviour of an imperfect beam with inclined
yokes.

7.4. Laterally loaded, end supported, initially imperfect beam with vertical yokes

This problem corresponds to the case of a hanging beam with a lateral wind load applied. The e�ect
will be to cause minor-axis deformation, so the beam will deform non-linearly as soon as it is loaded. It
is assumed that a lateral load p is applied to a beam with initial imperfection d0. To simplify the result,
an end supported beam (a=0) with vertical yokes (b=908) is considered.

Fig. 14 shows the results of such an analysis for a 40 m long beam supported at its ends, with a
lateral pressure induced by wind. The pressure p induced by a wind speed of VS is

p � 1

2
CDrdVS2 , �26�

where r is the density of air (1.225 kg/m3), CD is the drag coe�cient (=2.0 for a section like an I-beam

Fig. 13. E�ect of allowing the yokes to rotate in line with inclined cables.
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[Hoerner, 1965]) and d is the overall depth of the beam. Thus, for a 2 m deep beam in a wind speed of
20 m/s, p = 0.98 kN/m, while a 40 m/s wind induces a load of 3.92 kN/m. In the example, this is taken
to act at the mid-depth of the beam, so that e = 1.455 m. The e�ect of the lateral load is to induce
additional lateral de¯ection, which would cause additional minor axis bending stresses in the beam.
There may, of course, be handling problems with hanging beams which would prevent operations with a
crane at much lower wind speeds than these. Lateral forces can also be generated by inertial e�ects, for
example when slewing the crane.

8. Beam hanging from vertical cables

When the beam is supported from vertical cables (a=908) there is no axial force, H, in the beam. This
changes the form of the governing ¯exural di�erential equation Eq. (11) and the solution Eq. (12) is no
longer valid. A separate simple bending analysis must be carried out. Note that only vertical yokes
(b=908) will be considered here since inclined yokes would have no function with vertical cables.

By considering Fig. 8 (and remembering that H = 0 and V=cL/2 from Eqs. (5) and (6)), the
governing equation is:

M � ÿEIy
ÿ
v 00 ÿ v 000

� � cL
2
fxgÿ c�x� a�2

2
: �27�

This equation is valid both for the central section between the yoke attachment points and in the left
overhang. The right overhang can be found by symmetry. The term cL/2{x } includes a Macaulay
bracket { . . .}, since it describes the e�ect of the support reaction which only a�ects the bending moment
when x>0.

The governing equation is solved subject to v=0 at x=0 and v '=0 at x=b to give:

v � c
48EIy

�
2�x� a�4 ÿ L3x� 12b2Lxÿ 2a4 ÿ 4Lfxg3

�
� d0

�
sin

p�x� a�
L

ÿ sin
pa
L

�
: �28�

The overall equilibrium equation Eq. (2) can be applied. The beam's de¯ected shape must be
integrated over its length. Since the beam is symmetric, it is convenient to integrate over the left half of
the beam only:

Fig. 14. E�ect of lateral load (due to wind pressure) on the load de¯ection response.
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�
length

v dx � 2

�b
ÿa

v dx: �29�

Eq. (28) then gives an equation of the same form as a beam hanging from inclined cables:�
h sin y� p

w
e

�
� C cos y�w sin y� p� �D cos y �19 bis�

but with di�erent constants, so that:

C � 1

12EIy

�
L4

10
ÿ aL3 � 3a2L2 ÿ 2a3Lÿ a4

�
and

D � 2d0

�
1

p
ÿ 1

2
sin

pa
L

�
: �30�

Of particular interest is the mid-span de¯ection vms. From Eq. (28):

vms � c
384EIy

�5L2 ÿ 20aLÿ 4a2��2aÿ L�2 � d0

�
1ÿ sin

pa
L

�
: �31�

The mid-span curvature kms is obtained by di�erentiation of Eq. (28):

k0 � kms � c
8EIy
�L2 ÿ 4aL� � d0p2

L2
: �32�

As for the case with inclined yokes, it is the additional curvature that is of interest, so:

kms � c
8EIy
�L2 ÿ 4aL�: �33�

9. Simpli®cations

As with the solution for the inclined cables, it is possible to simplify the general solution for speci®c
cases.

9.1. Perfect beam with no lateral load

This is the simplest case Ð the buckling load of a beam hanging from vertical cables Ð there is no
initial imperfection (d0=0), and no lateral load ( p=0).

As for a beam hanging from inclined cables, there is a critical load wcr above which the beam will roll
about its axis and buckle. By making suitable substitutions into Eqs. (19) and (30),

wcr

EIy
� 120h

L4

�
1ÿ 10

a

L
� 30

a2

L2
ÿ 20

a3

L3
ÿ 10

a4

L4

� : �34�
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Mast (1989, 1993) derived a similar equation (if his factor of safety is set to unity), by checking for
overturning of the beam. To include the e�ects of angled cables Mast modi®ed this equation by the
factor (1ÿH/Pcr) (where H is the axial compression in the beam due to inclined cables and Pcr is the
Euler buckling load of the beam), and noted that this should be used with an appropriate safety factor.
This modi®cation and the present analysis agree well, but do not give identical results.

Fig. 15 shows the e�ect of varying the yoke position (as measured by a/L ) for vertical cables
(a=908), and also for a variety of other values of a obtained from the inclined cable analysis given
above. In all cases, the yokes are assumed to be vertical, so b=908. The signi®cant increase in the
buckling load that could be achieved by supporting the beam away from its ends is clearly visible,
although for a prestressed beam, it is probably very unlikely that such a support condition would be
allowable by virtue of the hogging bending that would be induced at the yoke attachment points.

Fig. 15 also shows, for the case of a=82.58, the mode shapes that result for di�erent support
positions. The dramatic di�erence that occurs on either side of the peak is marked. When supported
near the ends of the beam, the behaviour is for the centre of the beam to buckle sideways. When
supported closer to the centre, the e�ect is for the ends of the beam to buckle, while the middle remains
virtually straight.

Fig. 15. Critical load of beams when supported at di�erent positions and with cables of di�erent inclinations. Inset ®gures show

typical buckling modes.
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9.2. Initially imperfect beam with no lateral load Ð interaction of buckling modes

The analysis is also capable of dealing with the complex behaviour that results when buckling modes
interact. Fig. 16 shows the particular case of a beam with a/L=0.2375, a=758, b=908 and h/L=0.04.
This is close to the peak on Fig. 15. There are two, nearly adjacent, critical loads, as shown by the two
solid lines, which represent the post-buckling paths for perfect beams. Also shown are paths followed by
an imperfect beam, with d0/L= 0.00125, and as insets some of the corresponding mode shapes. Not all
of the imperfect paths would be stable. The way the mode shape changes at di�erent portions of this
complex curve can clearly be seen.

Fig. 16. Load de¯ection paths for a beam with two, closely adjacent, buckling loads. Inset ®gures show typical buckling modes.
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10. Analysis of the twist

At the beginning of this analysis, the assumption was made that the beam rotated as a rigid body. It
is possible to determine the reasonableness of that assumption (although not to correct it if it is false),
by calculating the torque T along the length of the beam, and then integrating this to give the relative
twist between the end of the beam and the centre. If this variation in twist is small by comparison with
the toppling angle y, then the assumption is valid.

Consideration of the forces acting on the beam, and its minor-axis displaced shape, allows the torque
to be determined. This has to be done separately for the overhangs and the central portion.

In the left overhang (x<0),

T � ÿp�x� a��hÿ e� ÿ
"

c
EIy

�
x5

20
� ax4

4
� a2x3

2
� a3x2

2
� a4x

4
ÿ a5

20

�#
w cos y �35�

while, between the supports,

T � ÿp�x� a��hÿ e� � w cos y
c

m4EIy

8<:
" 

1ÿ M0m2

c

!
�cos mx� tan mb sin mxÿ 1�

�m2
�
x2

2
ÿ bx

�#�
x� aÿ L

2

�
�
" 

1ÿ M0m2

c

!
�ÿm sin mx� m tan mb cos mx� � m2�xÿ b�

#

�
 
Hh

w
� L

2

�
xÿ h

tan b

�
ÿ axÿ x2 � a2

2

!
ÿ
" 

1ÿ M0m2

c

!
1

m
�sin mxÿ tan mb cos mxÿ mx

� tan mb� � m2x2

2

�
x

3
ÿ b

�#9=;� w cos y

"
a2l
2
ÿ a5c

20EIy
� Lhl

2 tan b

#
� cLh

2
:

�36�

Fig. 17. Variation of torque along the length of a hanging beam.
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The variation in torque that results from these equations can be seen in Fig. 17, which shows the case
of a 40 m long SY-6 beam with a= 4 m. The torque must be zero at the ends of the beam, and also at
the centre-line (by symmetry). If it is supported away from the ends, as in the ®gure, there will be a
signi®cant torque applied by the yokes. Note that the torque is a non-linear function of the roll angle y
(due to the cos y and sin y terms in Eqs. (35) and (36)), so this must be speci®ed when determining the
torque, but if there are no lateral loads, and y is small, then it can be shown that TA y.

The rate of twist along the beam can then be determined from the torque, taking account of the
torsional sti�ness of the beam, and this can then be integrated to get the variation in twist (dy ) between
the ends of the beam and the centreline. It is possible to integrate Eqs. (35) and (36) analytically, but the
resulting equations are very complex, and great accuracy is not required as this is simply a check on the
validity of the original assumptions, so it is simpler to integrate numerically. When this is done for the
case in Fig. 17, the variation in twist along the beam is 13% of the roll angle. This value increases when
the beam is supported near the peaks shown on Fig. 15, but these peaks correspond to the beam
buckling with very little rotation (so y itself is small, as is dy ). When the beam is supported at its ends,
dy/y is of the order of a few percent, so the assumption about a uniform toppling rotation was
reasonable.

It is possible to obtain some comparative results for di�erent sections which show why this analysis
applies particularly to concrete beams, and not to steel beams. The torque shown in Fig. 17 has both
positive and negative regions, which will tend to reduce the variation in twist along the beam. It will
clearly be largest if all the torque is in the same sense, as would happen if the beam were supported at
its ends. A beam with the dimensions shown in the inset of Fig. 18 was analysed. The beam has
dimensions comparable with those of an SY-6 beam, but with the addition of ¯anges. By varying the
width of these ¯anges, di�erent ratios of torsional sti�ness to minor axis sti�ness can be obtained.
Beams of this type were analysed, and for roll angles of 0.001 rad or 0.5 rad (0.068 or 28.68), the twist
variation was obtained and plotted against the ratio GJ/EIy, as shown in the main part of Fig. 18.

For an SY-6 beam, for which GJ/EIy=0.66, the error in the roll angle is negligible, as it would be for

Fig. 18. Variation in twist between the ends and the centreline of a hanging beam.
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most large, narrow concrete beams. Concrete beams with larger ¯anges would be unlikely to buckle
under self-weight anyway, so the error in the analysis for those beams would not be important.

Open steel beams, on the other hand, for which GJ/EIy will be an order of magnitude smaller, will
have much larger errors, as illustrated by a 914 � 419 � 388 kg/m Universal Beam, for which GJ/
EIy=0.014. These beams must be analysed using a more complex lateral±torsional buckling analysis,
which is not needed for concrete beams. The present results may, however, be applicable to steel box
sections, which are torsionally much sti�er.

11. Conclusions

The analysis presented here has shown that concrete beams can buckle laterally when hanging from a
crane. This buckling mode can be imagined as a rigid-body rotation about the point of attachment of
the cables, together with a minor-axis bending of the beam. Methods have been presented which show
how the buckling load, the buckling mode, and the load±de¯ection path of imperfect beams can all be
determined. Equations have been derived for both vertical cables and inclined cables. These can easily
be solved using the solver routine in a spreadsheet, or by a similar numerical process. Various special
cases have been examined to illustrate the capabilities of the method, and di�erent ways in which it can
be employed.

Simpli®ed versions of these results, and recommendations for the stability design of long precast
concrete beams, are presented elsewhere (Stratford et al., 1999).
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